Abstract

We previously reported on a new yeast strain of Clavispora sp. NRRL Y-50464 that is capable of utilizing cellobiose as sole source of carbon and energy by producing sufficient native β-glucosidase enzyme activity without further enzyme supplementation for cellulosic ethanol production using simultaneous saccharification and fermentation. Eliminating the addition of external β-glucosidase reduces the cost of cellulosic ethanol production. In this study, we present results on the isolation and identification of a β-glucosidase protein from strain Y-50464. Using Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and blast search of the NCBInr database (National Center for Biotechnology Information nonredundant), the protein from Y-50464 was identified as a β-glucosidase (BGL1) with a molecular weight of 93.3 kDa. The BGL1 protein was purified through multiple chromatographic steps to a 26-fold purity (K m = 0.355 mM [pNPG]; K i = 15.2 mM [glucose]), which has a specific activity of 18.4 U/mg of protein with an optimal performance temperature at 45 °C and pH of 6.0. This protein appears to be intracellular although other forms of the enzyme may exist. The fast growth rate of Y-50464 and its capability to produce sufficient β-glucosidase activity for ethanol conversion from cellobiose provide a promising means for low-cost cellulosic ethanol production through a consolidated bioprocessing development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call