Abstract

The capacity of 12 soils to degrade atrazine was studied in laboratory incubations using radiolabelled atrazine. Eight soils showed enhanced degradation of this compound. Twenty-five bacterial strains able to degrade atrazine were isolated by an enrichment method from 10 of these soils. These soils were chosen for their wide range of physico-chemical characteristics. Their history of treatment with atrazine was also variable. The genetic diversity of atrazine degraders was determined by amplified ribosomal restriction analysis (ARDRA) of the 16S rDNA gene with three restriction endonucleases. The 25 bacterial strains were grouped into five ARDRA types. By sequencing and aligning the 16S rDNA genes, the isolates were shown to belong to the Gram-negative species Chelatobacter heintzii, Aminobacter aminovorans, Stenotrophomonas maltophilia and to the Gram-positive genus Arthrobacter crystallopoietes. These species were not described previously as being capable of atrazine degradation. Most Gram-negative bacteria could mineralise (14)C ring labelled atrazine and carried the atzA, atzB, atzC and trzD genes. Gram-positive strains could convert atrazine to cyanuric acid and carried only the atzB and atzC genes. In this study, we describe the atrazine degradation capacities and corresponding genes in bacterial species that were not known as atrazine degraders. We report for the first time the occurrence of the trzD gene in these atrazine-mineralising bacteria and we demonstrate the potential use of colony hybridisation to isolate bacteria involved in atrazine degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.