Abstract

On the basis of previous studies on the mechanism-based inhibition, activation, and active site structure of myrosinase(s) isolated from Sinapis alba and other cruciferous seeds, crambe myrosinase shows uncommon properties and behavior. For this reason homogeneous crambe myrosinase was isolated and investigated to establish the most important physicochemical features, including kinetic properties determined with the epimers progoitrin (R) and epi-progoitrin (S) as substrates, with and without ascorbate as an activator. The results of this study demonstrate that crambe myrosinase is highly specific for epi-progoitrin due to a better stabilization of the enzyme-substrate complex. This stabilization is caused by additional hydrogen bonding that only epi-progoitrin can set up between its hydroxyl group and a suitable residue in the hydrophobic pocket where the "docking" of the glucosinolates side chain takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.