Abstract
A longstanding challenge for accurate sensing of biomolecules such as proteins concerns specifically detecting a target analyte in a complex sample (e.g., food) without suffering from nonspecific binding or interactions from the target itself or other analytes present in the sample. Every sensor suffers from this fundamental drawback, which limits its sensitivity, specificity, and longevity. Existing efforts to improve signal-to-noise ratio involve introducing additional steps to reduce nonspecific binding, which increases the cost of the sensor. Conducting polymer-based chemiresistive biosensors can be mechanically flexible, are inexpensive, label-free, and capable of detecting specific biomolecules in complex samples without purification steps, making them very versatile. In this paper, a poly (3,4-ethylenedioxyphene) (PEDOT) and poly (3-thiopheneethanol) (3TE) interpenetrating network on polypropylene–cellulose fabric is used as a platform for a chemiresistive biosensor, and the specific and nonspecific binding events are studied using the Biotin/Avidin and Gliadin/G12-specific complementary binding pairs. We observed that specific binding between these pairs results in a negative ΔR with the addition of the analyte and this response increases with increasing analyte concentration. Nonspecific binding was found to have the opposite response, a positive ΔR upon the addition of analyte was seen in nonspecific binding cases. We further demonstrate the ability of the sensor to detect a targeted protein in a dual-protein analyte solution. The machine-learning classifier, random forest, predicted the presence of Biotin with 75% accuracy in dual-analyte solutions. This capability of distinguishing between specific and nonspecific binding can be a step towards solving the problem of false positives or false negatives to which all biosensors are susceptible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.