Abstract
PurposeIncreasing commercial applications for small unmanned aircraft create growing challenges in providing safe flight conditions. The conventional measures to detect icing are either expensive, energy consuming or heavy. The purpose of this paper is to develop a fault identification and isolation scheme using unknown input observers to detect and isolate actuator and structural faults in simultaneous occurrence.Design/methodology/approachThe fault detection scheme is based on a deviation in system parameters due to icing and lock-in-place (LIP), two faults from different categories with similar indications that require different reconfiguration actions. The obtained residual signals are selected to be triggered by desired faults, while insensitive to others.FindingsThe proposed observer is sensitive to both actuator and structural faults, and distinguishes simultaneous occurrences by insensitivity to LIP in selected residue signals. Simulation results confirm the success of the proposed system in the presence of uncertainty and disturbance.Research limitations/implicationsThe fault detection and isolation scheme proposed here is based on the linear model of a winged aircraft, the Aerosonde. Moreover, the faults are applied to rudder and aileron in simulations, but the design procedure for other models is provided. The designed scheme could be further implemented on a non-linear aircraft model.Practical implicationsApplying the proposed icing detection scheme increases detection system reliability, since fault isolation enables timely reconfiguration schemes.Originality/valueThe observers proposed in previous papers detected icing fault but were not insensitive to actuator faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Unmanned Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.