Abstract
Consider the execution of a failing program as a sequence of program states. Each state induces the following state, up to the failure. Which variables and values of a program state are relevant for the failure? We show how the Delta Debugging algorithm isolates the relevant variables and values by systematically narrowing the state difference between a passing run and a failing run--by assessing the outcome of altered executions to determine wether a change in the program state makes a difference in the test outcome. Applying Delta Debugging to multiple states of the program automatically reveals the cause-effect chain of the failure--that is, the variables and values that caused the failure.In a case study, our prototype implementation successfully isolated the cause-effect chain for a failure of the GNU C compiler: "Initially, the C program to be compiled contained an addition of 1.0; this caused an addition operator in the intermediate RTL representation; this caused a cycle in the RTL tree--and this caused the compiler to crash."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.