Abstract

To date, supramolecular chemistry is an ever growing research field owing to its crucial role in molecular catalysis, recognition, medicine, data storage and processing as well as artificial photosynthetic devices. Different isolated supramolecules were prepared by molecular self-assembly on surfaces. This review mainly focuses on supramolecular aggregations on noble metal surfaces studied by scanning tunneling microscopy, including dimers, trimers, tetramers, pentamers, wire-like assemblies and Sierpiński triangular fractals. The variety of self-assembled structures reflects the subtle balance between intermolecular and molecule–substrate interactions, which to some extent may be controlled by molecules, substrates and the molecular coverage. The comparative study of different architectures helps identifying the operative mechanisms that lead to the structural motifs. The application of these mechanisms may lead to novel assemblies with tailored physicochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call