Abstract

Although murine models for studying the development of cardiac dysfunction in diabetes mellitus are well established, their reported cardiac phenotypes vary. These reported divergences may, in addition to the severity of different models, also be linked to the methods used for cardiac functional assessment. In the present study, we examined the functional changes using conventional transthoracic echocardiography (in vivo) and isolated heart perfusion techniques (ex vivo), in hearts from two mouse models; one with an overt type 2 diabetes (the db/db mouse) and one with a prediabetic state, where obesity was induced by a high-fat diet (HFD). Analysis of left ventricular function in the isolated working hearts from HFD-fed mice, suggested that these hearts develop diastolic dysfunction with preserved systolic function. Accordingly, in vivo examination demonstrated maintained systolic function, but we did not find parameters of diastolic function to be altered. In db/db mice, ex vivo working hearts showed both diastolic and systolic dysfunction. Although in vivo functional assessment revealed signs of diastolic dysfunction, the hearts did not display reduced systolic function. The contrasting results between ex vivo and in vivo function could be due to systemic changes that may sustain in vivo function, or a lack of sensitivity using conventional transthoracic echocardiography. Thus, this study demonstrates that the isolated perfused working heart preparation provides unique additional information related to the development of cardiomyopathy, which might otherwise go unnoticed when only using conventional echocardiographic assessment.

Highlights

  • The transition to a more sedentary lifestyle and overnutrition, has led to increased incidence of obesity, hyperglycaemia, insulin resistance, dyslipidaemia, and metabolic syndrome—all known risk factors of cardiovascular disease

  • We examined the functional changes in hearts from two mouse models of obesity/diabetes; the db/db mouse, a model of severe obesity and diabetes, and a Diet-induced obese (DIO) model induced by a high-fat diet, representing a model of obesity and prediabetes

  • Similar tibia lengths in the two groups of mice supports that the observation of increased weight gain in high-fat diet (HFD) mice is attributable to fat deposits and not the animal size per se (Fig 1)

Read more

Summary

Introduction

The transition to a more sedentary lifestyle and overnutrition, has led to increased incidence of obesity, hyperglycaemia, insulin resistance, dyslipidaemia, and metabolic syndrome—all known risk factors of cardiovascular disease. A range of murine models is used to elucidate underlying mechanisms in the development of obesity and diabetes related cardiac dysfunction. Mice homozygous for the obese (Lepob) and the diabetes (Leprdb) mutations are among the earliest characterized models of obesityrelated insulin resistance and diabetes. In these monogenic models, leptin deficiency (ob/ob mice) or leptin receptor deficiency (db/db mice) lead to lack of satiety sensation, which causes hyperphagia and hypoactivity. Studies using diabetic db/db mice have reported both development of ventricular remodelling and cardiac dysfunction [4,5,6,7,8], there are studies reporting normal cardiac structure and function [9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call