Abstract

Designing low-cost, high-efficiency, platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in an alkaline electrolyte is of great importance for the development of anion exchange membrane fuel cells. Herein, we report a novel HOR catalyst, RuNi1, in which Ni is atomically dispersed on the Ru nanocrystals. To note, the as-prepared RuNi1 catalyst exhibits excellent catalytic activity and stability for HOR in alkaline media, which is superior to those of Ru-Ni bimetallic nanocrystals, pristine Ru, and commercial Pt/C catalysts. Density functional theory (DFT) calculations suggest that isolation of Ni atoms on Ru nanocrystals not only optimizes the hydrogen-binding energy but also decreases the free energy of water formation, thus leading to excellent electrocatalytic activity of RuNi1 catalyst. The results show that engineering a catalyst at an atomic level is highly effective for rational design of electrocatalysts with high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.