Abstract

Barley isolated microspore culture (IMC) was compared to anther culture (AC) for its efficiency in green plant (GP) regeneration. With six cultivars investigated, IMC resulted in significantly more GPs (3.6–287 per 100 anthers) than AC (0–29.6), which was on average 9.3-fold more efficient (113.7 vs 12.2). GPs were produced via IMC from all the genotypes tested, whereas no green shoot was generated by AC in two of the cultivars. In spite of genotype dependency for regeneration rates, the average GP percentage of IMC was just slightly higher than that of AC. Effects of microspore developmental stages and medium-sterilization methods on IMC were examined with the aim of optimizing culture conditions. We found that the optimum stage for cold pretreatment of spikes was different from that for mannitol starvation of anthers. Significant variations in microspore embryogenesis and regeneration were observed among five stages tested. Optimal stages for the two pretreatments were accordingly determined. Percentages of viable microspores were strongly influenced by protocols of medium-aseptisation. Although filter-sterilized media yielded two-time higher frequencies of living microspores and significantly more GPs than autoclaved ones, the filtration protocol was rather labor-intensive and time-consuming. Therefore a new procedure by combining filtering with autoclaving was subsequently developed as it was more effective than autoclaving and more convenient than filter-sterilization. The method described here could be useful for large-scale preparation of culture media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call