Abstract

Silyl anions have garnered significant attention due to their synthetic abilities. However, previously reported silyl anions have been limited to either trigonal-pyramidal or trigonal-planar geometries, which confine them primarily as nucleophiles in substitution reactions. Herein, we report the isolation of the unprecedented T-shaped planar silyl anion salt 2 by employment of a geometrically constrained triamido pincer ligand. Theoretical calculations disclosed that the silicon centre in 2 possesses both a lone pair of electrons and an empty 3pz orbital. In addition to nucleophilic substitution reactions with Ph3PAuCl and W(CO)6, 2 readily undergoes oxidative additions with CO2 and 2,6-dimethylphenylisonitrile at room temperature. Furthermore, under mild conditions, compound 2 cleaves Csp2-H, Csp2-H, and H-H bonds in 1,2,4,5-tetrafluorobenzene, an intramolecular iPr group, and dihydrogen, representing the first examples of C-H and H-H activations mediated by a silyl anion, respectively. This work unveils new reactivity of silyl anions owing to the non-classical geometry and electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.