Abstract

Since the pioneering work by Thiele and Chichibabin, who synthesized the first diradicals bridged by phenylene and biphenylene groups in 1904 and 1907, respectively, numerous efforts have been devoted to synthesizing stable diradicals during the last few decades, and several strategies have been developed to stabilize these highly reactive diradicals. In this Account, we describe the synthesis and characterization of isolable bis(triarylamine) dications, nitrogen analogues of Thiele's, Chichibabin's, and Müller's hydrocarbons, which represent facilely accessible, stable diradicals by replacing carbinyl centers with isoelectronic aminium centers. Along with discussing the molecular structures and electronic structures of the isolated bis(triarylamine) dications, their spectroscopic and magnetic properties are also introduced. Since 2011, we have reported the stabilization of a variety of radical cations bearing the weakly coordinating anion Al(ORF)4- (RF = polyfluorinated alkyl group), which we have recently successfully applied for the stabilization and crystallization of bis(triarylamine) dications, analogues of Thiele's, Chichibabin's, and Müller's hydrocarbons. Prior to our and Kamada's work, there have been only three stable bis(triarylamine) dications isolated in the solid state. The facile access of bis(triarylamine) dications in their crystalline forms allowed us to pursue a deep investigation of their solid-state structures, electronic structures, and physical properties. Similar to their hydrocarbon analogues, bis(triarylamine) dications possess characteristic resonance structures between open-shell singlet (OS) diradicals and closed-shell (CS) quinoidal forms. The combination of single-crystal X-ray diffraction (XRD) analysis and density functional theory (DFT) calculations has proved to be a robust strategy to gain a better understanding of the electronic structures of the obtained diradicals. The structural parameters obtained from XRD analysis reflect the overall contribution of each resonance structure to the crystal structure. The comparison of the parameters from the crystal structures with those from DFT calculations for the pure electronic configurations (CS, OS, and triplet states) affords an overview of the ground-state structures of the diradicals. To justify the "degree" of singlet diradical character, the diradical parameter y is applied, which is estimated by the occupancy of the lowest unoccupied natural orbital (LUNO) having antibonding nature (y = 0 for the closed-shell and y = 1 for the pure singlet diradical). In addition, magnetic susceptibility measurements serve as a practical experimental method to determine the singlet-triplet energy gaps of the isolable diradical dications. Through detailed studies on isolable bis(triarylamine) dications, magnetic bistability caused by intramolecular electron-exchange interactions was observed. Moreover, we also found that the singlet-triplet energy gaps of the diradicals could be thermally controlled. These investigations highlight the potential of bis(triarylamine) dications as building blocks for functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call