Abstract
AbstractThe development of high‐performance ambipolar polymer semiconductors is critical to organic electronics. Herein, isoindigo (IID)‐based copolymers PIIDDTBT and PIIDDTffBT are synthesized and characterized. Both polymers have suitable highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels for hole and electron injection. Density functional theory calculation reveals F⋯S intramolecular interactions are formed in PIIDDTffBT, which locks the molecular conformation and leads to a more planar backbone. Thin film transistor characterization shows both polymers display ambipolar charge carrier transport behavior. The hole/electron mobilities are 0.29/0.1 cm2 V−1 s−1 for PIIDDTffBT and 0.053/0.013 cm2 V−1 s−1 for PIIDDTBT in the bottom‐gate/top‐contact (BGTC) device structures. The hole/electron mobilities of PIIDDTffBT are one of the highest values for IID‐based ambipolar polymer transistors in BGTC device structure. Atomic force microscopy and X‐ray diffraction results reveal PIIDDTffBT films have higher film quality, crystallinity, and more ordered microstructures, being ascribed to the F⋯S interactions locked backbone. These results demonstrate that the introduction of F⋯S interactions is an effective strategy to design high‐performance ambipolar polymer semiconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.