Abstract

AbstractIn isogeometric analysis, NURBS basis functions are used as shape functions in an isoparametric finite‐element‐type discretization. Among other advantageous features, this approach is able to provide exact and smooth representations of a broad class of computational domains with curved boundaries. Therefore, this discretization method seems to be especially convenient for computational shape optimization, where a smooth and CAD‐like parametrization of the optimal geometry is desired. Choosing boundary control point coordinates of an isogeometric discretization as design variables, an additional design model can be avoided. However, for a higher number of design variables, typical drawbacks like oscillating boundaries as known from early node‐based shape optimization methods appear. To overcome this problem, we propose to use a fictitious energy regularization: the strain energy of a fictitious deformation, which maps the initial to the optimized domain, is employed as a regularizing term in the optimization problem. Moreover, this deformation is used for efficiently moving the dependent nodes within the domain in each step of the optimization process. (© 2011 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.