Abstract
Understanding the flutter characteristics of heated laminated plates, both with and without cutout, is crucial. This study presents the first exploration of flutter analysis in a thermal environment for a laminated plate featuring a cutout. To facilitate this study, the motion equations of the heated laminated plate with a cutout are derived using the first-order shear deformation theory (FSDT), incorporating a nonlinear term. Employing the isogeometric method combined with multi-path coupling technology, we establish accurate geometric and solution domains for the laminated plate. The effects of the thermal stresses and the aerodynamics calculated by the linear piston theory are considered. The accuracy and effectiveness of the proposed model are validated through several comparisons with ANSYS results and existing solutions. Additionally, the study examines the impact of key parameters on flutter characteristics, including thermal conditions, number of layers, lay-up angles, inflow angles, and cutout dimensions. The insights gained from this research will serve as a valuable benchmark for future analyses and design concerning flutter characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.