Abstract

Material nonlinearity is of great importance in many engineering problems. In this paper, we exploit NURBS-based isogeometric approach in solving materially nonlinear problems, i.e. elastoplastic problems. The von Mises model with linear isotropic hardening and kinematic hardening is presented, and furthermore the method can also be applied to other elastoplastic models without any loss of generality. The NURBS basis functions allow us to describe exactly the curved geometry of underlying problems and control efficiently the accuracy of approximation solution. Once the discretized system of non-linear equilibrium equation is obtained, the Newton-Raphson iterative scheme is used. Several numerical examples are tested. The accuracy and reliability of the proposed method are verified by comparing with results from ANSYS Workbench software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.