Abstract

We explore how recent advances in Isogeometric analysis, Galerkin Least-Squares methods, and Augmented Lagrangian techniques can be applied to solve nonstandard problems, for which there is no classical stability theory, such as that provided by the Lax–Milgram lemma or the Banach-Necas-Babuska theorem. In particular, we consider continuation problems where a second-order partial differential equation with incomplete boundary data is solved given measurements of the solution on a subdomain of the computational domain. The use of higher regularity spline spaces leads to simplified formulations and potentially minimal multiplier space. We show that our formulation is inf-sup stable, and given appropriate a priori assumptions, we establish optimal order convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.