Abstract

F2-Isoprostanes (F2-IsoPs) and Isofurans (IsoF), specific markers of lipid peroxidation in vivo, have been reported to be elevated and have prognostic implications following subarachnoid hemorrhage (SAH). Platelet activation and vasoconstriction are attributed to these compounds. Elevated IsoF to F2-IsoPs ratios have been proposed as in vivo biomarkers of mitochondrial dysfunction. In this pilot study, we examined their performance as specific biomarkers for delayed cerebral ischemia (DCI) development following SAH. Eighteen patients with SAH and six controls with normal neuroimaging and cerebrospinal fluid (CSF) analysis results underwent CSF sampling and abstraction of clinical, demographic, and laboratory data. Samples (two) of CSF were collected on day 1 and once on days 5-8 post bleed. F2-IsoP and IsoF assays were performed by gas chromatography/mass spectroscopy methods. Levels are expressed in median (interquartile range) for nonnormally distributed data. Repeated sample measurements were compared using the Wilcoxon signed-rank test, whereas the Mann-Whitney U-test was used for other nonnormally distributed data. Mean age was 61 ± 15.7 (SAH cases) versus 48 ± 10 (controls) years, and 80% of patients with SAH were women. Median Hunt and Hess score was 3 (2-4), and modified Fisher scale was 3 (3-4). Thirty nine percent of patients developed DCI. F2-IsoP were significantly higher in SAH cases than in controls [47.5 (30.2-53.5) vs. 26.0 (21.2-34.5) pg/mL]. No significant differences were observed in patients with or without DCI [41 (33.5-52) vs. 44 (28.5-55.5) pg/mL]. IsoF were elevated in the second CSF sample in nine patients but were undetectable in the remainder cases and all controls. Patients who developed DCI had significantly higher IsoF than those who did not [57 (34-72) vs. 0 (0-34) pg/mL]. Patients who met criteria for DCI had a significantly higher IsoF to F2IsoPs ratio on the late CSF sample [1.03 (1-1.38) vs. 0 (0-0.52)]. Preliminary findings from this study suggest that IsoF may represent a specific biomarker predicting DCI following SAH. Future studies to further explore the value of IsoF as biomarkers of secondary brain injury following SAH seem warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call