Abstract
Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that control multiple aspects of physiology and development. TRs are expressed in vertebrates as a series of distinct isoforms that exert distinct biological roles. We wished to determine whether the two most widely expressed isoforms, TR alpha 1 and TR beta 1, exert their different biological effects by regulating different sets of target genes. Using stably transformed HepG2 cells and a microarray analysis, we were able to demonstrate that TR alpha 1 and TR beta 1 regulate a largely overlapping repertoire of target genes in response to T(3) hormone. However, these two isoforms display very different transcriptional properties on each individual target gene, ranging from a much greater T(3)-mediated regulation by TR alpha 1 than by TR beta 1, to near equal regulation by both isoforms. We also identified TR alpha 1 and TR beta 1 target genes that were regulated by these receptors in a hormone-independent fashion. We suggest that it is this gene-specific, isoform-specific amplitude of transcriptional regulation that is the likely basis for the appearance and maintenance of TR alpha 1 and TR beta 1 over evolutionary time. In essence, TR alpha 1 and TR beta 1 adjust the magnitude of the transcriptional response at different target genes to different levels; by altering the ratio of these isoforms in different tissues or at different developmental times, the intensity of T(3) response can be individually tailored to different physiological and developmental requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.