Abstract

AMPK is a heterotrimeric complex that serves as a major sensor of energy status in eukaryotic cells. Accumulating evidence depicts a complex role of dysregulated AMPK signaling in Alzheimer's disease (AD). In this issue of the JCI, Zimmermann et al. report on their investigation of AD-specific differential expression of AMPKα1 and AMPKα2 isoforms of the catalytic subunit and demonstrate that genetic reduction of AMPKα1, but not AMPKα2, rescued cognitive decline in AD mouse models. These findings reveal an isoform-specific role of AMPKα in the pathogenesis of AD, which likely provides a more precise target for future therapeutic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.