Abstract

Naturally occurring splice variants of human constitutive androstane receptor (hCAR) exist, including hCAR-SV23 (insertion of amino acids SPTV), hCAR-SV24 (APYLT), and hCAR-SV25 (SPTV and APYLT). An extract of Ginkgo biloba was reported to activate hCAR-SV24 and the wild type (hCAR-WT). However, it is not known whether it selectively affects hCAR splice variants, how it activates hCAR isoforms, and which chemical is responsible for the effects of the extract. Therefore, we evaluated the impact of G. biloba extract on the functionality of hCAR-SV23, hCAR-SV24, hCAR-SV25, and hCAR-WT and compared it with that of phenobarbital, di-(2-ethylhexyl)phthalate (DEHP), 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), and 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in cell-based reporter gene assays. Among the hCAR splice variants investigated, only hCAR-SV23 was activated by G. biloba extract, and this required cotransfection of a retinoid X receptor α (RXRα) expression plasmid. The extract activated hCAR-SV23 to a lesser extent than hCAR-WT, but ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide were not responsible for the effects of the extract. CITCO activated hCAR-SV23, hCAR-SV24, and hCAR-WT. By comparison, phenobarbital activated hCAR-WT, whereas DEHP activated hCAR-SV23, hCAR-SV24 (with exogenous RXRα supplementation), and hCAR-WT. TCPOBOP did not affect the activity of any of the isoforms. G. biloba extract and phenobarbital did not bind or recruit coactivators to the ligand-binding domains of hCAR-WT and hCAR-SV23, whereas positive results were obtained with the controls (CITCO for hCAR-WT and DEHP for hCAR-SV23). In conclusion, G. biloba extract activates hCAR in an isoform-selective manner, and hCAR-SV23, hCAR-SV24, and hCAR-WT have overlapping, but distinct, sets of ligands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.