Abstract

We analytically and numerically consider the hydrodynamic and thermal transport behavior of fully developed laminar flow through a superhydrophobic (SH) parallel-plate channel. Hydrodynamic slip length, thermal slip length and heat flux are prescribed at each surface. We first develop a general expression for the Nusselt number valid for asymmetric velocity profiles. Next, we demonstrate that, in the limit of Stokes flow near the surface and an adiabatic and shear-free liquid–gas interface, both thermal and hydrodynamic slip lengths can be found by redefining existing solutions for conduction spreading resistances. Expressions for the thermal slip length for pillar and ridge surface topographies are determined. Comparison of fundamental half-space solutions for the Laplace and Stokes equations facilitate the development of expressions for hydrodynamic slip length over pillar-structured surfaces based on existing solutions for the conduction spreading resistance from an isothermal source. Numerical validation is performed and an analysis of the idealized thermal transport behavior suggests conditions under which superhydrophobic microchannels may enhance heat transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call