Abstract
Despite intense investigation, the mechanism of isoflurane-induced cerebral hyperemia is unclear. The current study was designed to determine the contributions of neuronal nitric oxide synthase, prostaglandins, and epoxyeicosatrienoic acids to isoflurane-induced cerebral hyperemia. Regional cerebral cortical blood flow was measured with laser Doppler flowmetry during stepwise increases of isoflurane from 0.0 to 1.2, 1.8, and 2.4 vol% end-tidal concentration in alpha-chloralose-urethane-anesthetized, C57BL/6 mice before and 45 min after administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI, 40 mg/kg, intraperitoneal), the cyclooxygenase inhibitor indomethacin (INDO, 10 mg/kg, intravenous), and the cytochrome P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-proparglyoxyphenyl)hexanoic acid (PPOH, 20 mg/kg, intravenous). Isoflurane increased regional cerebral cortical blood flow by 9 +/- 3, 46 +/- 21, and 101 +/- 26% (SD) at 1.2, 1.8, and 2.4 vol%, respectively. The increases in regional cerebral cortical blood flow were significantly (*P < 0.05) smaller after 7-NI (5 +/- 6, 29 +/- 19*, 68 +/- 15%*) or PPOH (4 +/- 8, 27 +/- 17*, 67 +/- 30%*), but not after administration of INDO (4 +/- 4, 33 +/- 18 [NS], 107 +/- 35% [NS]). The effect of combined treatment with 7-NI, PPOH, and INDO was not additive and was equal to that of either 7-NI or PPOH alone (5 +/- 5, 30 +/- 12*, 76 +/- 24%*). Chronic treatment of mice for 5 days with 7-NI (2 x 40 mg/kg, intraperitoneal) produced similar decreases in regional cerebral cortical blood flow as those seen with acute administration. Neither PPOH nor INDO conferred a significant additional block of the hyperemia in these animals. Nitric oxide and epoxyeicosatrienoic acids contribute to isoflurane-induced hyperemia. However, only approximately one third of the cerebral hyperemic response to isoflurane is mediated by autacoids. The remaining part of this response appears to be mediated by a direct action of isoflurane on smooth muscle by some yet-unknown mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.