Abstract

Isoflurane is a volatile anesthetic commonly used for animal studies. In particular, diffusion nuclear magnetic resonance (NMR) spectroscopy is frequently performed under isoflurane anesthesia. However, isoflurane is known to affect the phase transition of lipid bilayer, possibly resulting in increased permeability to metabolites. Resulting decreased restriction may affect metabolite apparent diffusion coefficient (ADC). In the present work, the effect of isoflurane dose on metabolite ADC is evaluated using diffusion tensor spectroscopy in the monkey brain. For the five detected intracellular metabolites, the ADC exhibits a significant increase when isoflurane dose varies from 1% to 2%: 13%+/-8% for myo-inositol, 14%+/-13% for total N-acetyl-aspartate, 20%+/-18% for glutamate, 27%+/-7% for total creatine and 53%+/-17% for total choline. Detailed analysis of ADC changes experienced by the five different metabolites argues in favor of facilitated metabolite exchange between subcellular structures at high isoflurane dose. This work strongly supports the idea of metabolite diffusion in vivo being significantly restricted in subcellular structures at long diffusion time, and provides new insights for interpreting ADC values as measured by diffusion NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.