Abstract

To help clarify the mechanisms by which volatile anaesthetics act on neuronal Ca2+ channel currents (IBa), the effects of isoflurane were studied on IBa in rat dorsal root ganglion (DRG) cells. Voltage-dependent IBa were pharmacologically subdivided into L-, N- and P/Q-types, and toxin-resistant IBa. At clinically relevant concentrations, isoflurane inhibited the L-, N- and P/Q-types, but not toxin-resistant IBa. The IC50 values for the L-, N- and P/Q-types were 0.7%, 1.3% and 3.0%, respectively (concentrations equivalent to 0.35, 0.68 and 1.46 mmol litre-1 in the aqueous phase). Isoflurane also produced initial transient augmentation of the N-type IBa. Isoflurane shifted the mid-point of the steady-state inactivation curve for the L-, N- and P/Q-type IBa towards negative potentials, and prolonged the time constant of current reactivation. We conclude that isoflurane inhibited L-, N- and P/Q-type IBa in rat DRG neurones by enhancing current inactivation and prolonging recovery time after inactivation. Transient augmentation of the N-type IBa may also form part of the overall actions of isoflurane in DRG neurones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call