Abstract
Volatile general anesthetics increase agonist-mediated ion flux through the gamma-aminobutyric acid(A), glycine, and 5-hydroxytryptamine3 (5-HT3) receptors. This action reflects an anesthetic-induced increase in the apparent agonist affinity of these receptors. In contrast, volatile anesthetics block ion flux through the nicotinic acetylcholine receptor (nAcChoR). The authors tested the hypothesis that in addition to blocking ion flux through the nAcChoR, isoflurane also increases the apparent affinity of the nAcChoR for agonist. Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent agonist affinity of the nAcChoR was determined using a new stopped-flow fluorescence assay. This assay derives the apparent agonist affinity of the nAcChoR from the apparent rates with which agonists convert nAcChoRs from the resting state to the desensitized state. Isoflurane significantly increased the apparent affinity (decreased the apparent dissociation constant) of acetylcholine for the nAcChoR at clinically relevant concentrations. The apparent dissociation constant decreased exponentially with the isoflurane concentration from a control value of 44+/-4 microM to 1.0+/-0.1 microM in the presence of 1.5 mM isoflurane, the highest concentration studied. Isoflurane increases the apparent agonist affinity of the nAcChoR; however, this effect is poorly resolved in ion flux studies because isoflurane also causes channel blockade. The lack of saturation of isoflurane's effect on the apparent agonist affinity even at relatively high isoflurane concentrations argues against a single site of anesthetic action. However, it is consistent with isoflurane interactions with several receptor sites that exhibit a range of anesthetic affinities, sites within the membrane lipid, or both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.