Abstract

Despite routine use of fentanyl in patients after traumatic brain injury (TBI), it is unclear if it is the optimal sedative/analgesic agent. Isoflurane is commonly used in experimental TBI. We hypothesized that isoflurane would be neuroprotective versus fentanyl after TBI. Rats underwent controlled cortical impact (CCI) and received 4 h of N2O/O2 (2:1) and either fentanyl (10 microg/kg i.v. bolus, 50 microg/kg/h infusion) or isoflurane (1% by inhalation) with controlled ventilation. Shams underwent identical preparation, without CCI. Functional outcome (beam balance, beam walking, Morris water maze [MWM] tasks) was assessed over 20 days. Lesion volume and hippocampal neuron survival were quantified on day 21. Additional rats underwent identical CCI and anesthesia with intracranial pressure (ICP) monitoring, and brain water content was assessed. Motor and MWM performances were better in injured rats treated with isoflurane versus fentanyl (p < 0.05). CA1 hippocampal damage was attenuated in isoflurane-treated rats (p < 0.05). Fentanyl-treated rats had higher mean arterial blood pressure after injury (p < 0.05); however, ICP and brain water were similar between groups. Isoflurane improved functional outcome and attenuated damage to CA1 versus fentanyl in rats subjected to CCI. Isoflurane may be neuroprotective by augmenting cerebral blood flow and/or reducing excitotoxicity, not by reducing ICP or brain water content. Alternatively, fentanyl may be detrimental. Isoflurane may mask beneficial effects of novel agents tested in TBI models. Additionally, fentanyl may not be optimal early after TBI in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call