Abstract

Cardiac progenitor cells (CPCs) derived from human embryonic stem cells (hESCs) can multiply and generate cardiomyocytes, offering their tremendous potential for cardiac regenerative therapy. However, poor survival under stressful conditions is a major hurdle in the regeneration. We investigated whether isoflurane-induced preconditioning can increase hESC-derived CPC survival under oxidative stress. Undifferentiated hESCs were cultured in suspension with 20% FBS (fetal bovine serum) and 20 ng/ml of BMP-4 (bone morphogenetic protein-4) to form embryoid bodies and grown onto Matrigel-coated plates for 2-3 weeks. To characterise the differentiated CPCs, immunostaining for Nkx2.5 (nonspecific transcriptional marker) and Isl-1 was performed. hESC-derived CPCs were exposed to oxidative stress induced by H(2) O(2) and FeSO(4) . For anaesthetic preconditioning, CPCs were exposed to isoflurane (0.25, 0.5, 1.0 mM). CPC survival was determined by trypan blue exclusion. A mitoK(ATP) channels inhibitor, 5-hydroxydecanoic acid (200 μM) and an opener, diazoxide (100 μM), were used to investigate the involvement of mitoK(ATP) channels. hESC-derived CPCs stained with Nkx2.5 were 95 ± 3% of total cell number. Isoflurane (0.5 and 1.0 mM)-preconditioned CPCs showed a significantly lower death rate compared with control (0.5 mM: 30.6 ± 10.7% and 1.0 mM: 28.5 ± 6.2% vs. control: 43.2 ± 9.9%). Inhibition of mitoK(ATP) channels with 5-HD completely abolished the protective effects of isoflurane. Diazoxide significantly decreased CPC death (29.5 ± 12.4%). However, when diazoxide was applied to CPC preconditioned with isoflurane, CPC death did not decrease further (28.7 ± 10.9%). Isoflurane increased hESC-derived Nkx2.5(+) CPC survival under oxidative stress, and mitoK(ATP) channels may be involved in the protective effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.