Abstract
Volatile anesthetics decrease Ca²⁺ entry through voltage-dependent Ca²⁺ channels. Ca influences neurotransmitter release and neuronal excitability. Because volatile anesthetics act specifically on the spinal cord to produce immobility, we examined the effect of isoflurane and the nonimmobilizers F6 (1, 2-dichlorohexafluorocyclobutane) and F8 (2, 3-dichlorooctafluorobutane) on CaV1 and CaV2 Ca²⁺ channels in spinal cord motor neurons and dorsal root ganglion neurons. Using patch clamping, we compared the effects of isoflurane with those of F6 and F8 on CaV1 and CaV2 channels in isolated, cultured adult rat spinal cord motor neurons and on CaV1 and CaV2 channels in adult rat dorsal root ganglion sensory neurons. In spinal cord motor neurons, isoflurane, but not F6 or F8, inhibited currents through CaV1 channels. Isoflurane and at least one of the nonimmobilizers inhibited currents through CaV1 and CaV2 channels in dorsal root ganglion neurons and CaV2 in spinal cord motor neurons. The findings that isoflurane, but not nonimmobilizers, inhibited CaV1 Ca²⁺ channels in spinal cord motor neurons are consistent with the notion that spinal cord motor neurons might mediate isoflurane-induced immobility. Additional studies are required to examine whether inhibition of CaV1 calcium currents in spinal cord motor neurons is sufficient or whether actions on other channels/proteins contribute to isoflurane-induced immobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.