Abstract

Isoflurane stimulates the metabolism of 2-chloro-1,1-difluoroethene (CDE) in liver microsomes from phenobarbital-treated rats or rabbits. The P450 isozymes involved and the mechanism by which such stimulation occurs have not been clarified. The present study examined the effects of isoflurane ami cytochrome b 5 on CDE metabolism in reconstituted systems containing purified rat CYP2B1 orCYP2C6. Under similar incubation conditions, CYP2B1 defluorinated CDE at approximately five times the rate of CYP2C6. Isoflurane was a potent stimulator of CDE metabolism, increasing it nearly 5-fold when catalyzed by CYP2B1, but only 2-fold when catalyzed by CYP2C6. Isoflurane had no stimulatory effect on benzphetamine metabolism by CYP2B1 or CYP2C6. Cytochrome b 5 was not required for isoflurane-facilitated CDE metabolism; however, the addition of cytochrome b 5 to CYP2B1 increased CDE metabolism 71 and 44%, in the absence and presence of isoflurane, respectively. In reconstituted CYP2B1, isoflurane generated a type I difference spectrum of approximately twice the magnitude of CDE and stimulated NADPH consumption more so than CDE. The same quantity of NADPH was consumed when CDE was present with isoflurane as compared with isoflurane alone. These data support the hypothesis that isoflurane stimulates CDE metabolism by a mechanism involving increased P450 reduction via direct isoflurane interaction with P450.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call