Abstract

Soybean (Glycine max (L.) Merr) is a nutrient-rich crop with a high protein content and various bioactive compounds with health-promoting properties. Nevertheless, it is poorly accepted as a food by consumers due to its off-flavour. Due to the ubiquitous presence of isoflavones in soybeans, their inherent antioxidant potential and inhibitory effect on lipoxygenase activity, their sensory properties are currently being considered to mitigate the off-flavour. In the present study, the content and composition of isoflavones in 17 soybean cultivars are determined. The correlation between the isoflavone mass fraction and lipid peroxidation was also established, using thiobarbituric acid (TBA) value and carbonyl compound concentration as indices for the development of off-flavour. Cloning, gene expression analysis and in silico analysis of isoflavone synthase isoforms (IFS1 and IFS2) were also performed. The total isoflavone mass fraction in soybean genotypes ranged from (153.5±7.2) µg/g for PUSA 40 to (1146±43) µg/g for Bragg. There was a moderately negative correlation between the indices of off-flavour formation and the genistein/daidzein ratio (p<0.1). However, the correlation with total isoflavone mass fraction was found to be insignificant, indicating complex interactions. Higher protein-protein interactions for the predicted structure of IFS2 with other biosynthesis enzymes and its comparatively higher expression in the Bragg than that of IFS1 indicated its more important role in isoflavone synthesis. The genistein/daidzein mass ratio was found to be an important factor in controlling off-flavour. IFS2 was identified as key to produce soybeans with high isoflavone mass fraction and potentially lower off-flavour formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call