Abstract

BackgroundIsoferulic acid (IFA), a naturally occurring cinnamic acid derivative, is a main active ingredient of the rhizoma of Cimicifuga dahurica. It has been shown various pharmacological activities. The aim of the study was to investigate the effect of IFA against MG-induced protein glycation and oxidative DNA damage. Free radical scavenging activity and the MGO-trapping abilities of IFA were also investigated.MethodsThe fluorescent MG-derived AGEs and non-fluorescent Nε-(carboxymethyl) lysine (Nε-CML) was measured using a spectrofluorometer and an enzyme linked immunosorbant assay (ELISA). Protein carbonyl content was used to detect protein oxidation. Gel electrophoresis was used to determine DNA damage. Superoxide anion radicals and hydroxyl radicals were determined using cytochrome c reduction assay and thiobarbituric acid reactive 2-deoxy-D-ribose oxidation products, respectively. The MG-trapping capacity was performed by HPLC.ResultsIFA (1.25–5 mM) inhibited the formation of fluorescent MG-derived AGEs, and Nε-CML, and protein carbonyl in bovine serum albumin. In addition, IFA (0.1–1 mM) also prevented MG/lysine-mediated oxidative DNA damage in the presence and absence of copper ion. The protective ability of IFA was directly correlated to inhibition of hydroxyl and superoxide anion radical generation during the reaction of MG and lysine. Most notably, IFA had no the directly trapping ability to MG.ConclusionsThe present results highlighted that free radical scavenging activity, but not the MG-trapping ability, is the mechanism of IFA for preventing MG-induced protein glycation and DNA damage.

Highlights

  • Isoferulic acid (IFA), a naturally occurring cinnamic acid derivative, is a main active ingredient of the rhizoma of Cimicifuga dahurica

  • QIAprep Spin Miniprep kit was obtained from Qiagen (Venlo, Netherlands) and cytochrome c was purchased from Affymetrix (Santa Clara, CA, USA)

  • Effect of IFA on the formation of fluorescent MG-derived advanced glycation end-products (AGEs) and protein oxidation Figure 1 depicts the fluorescence intensity of bovine serum albumin (BSA) incubated with MG and IFA for up to 2 weeks

Read more

Summary

Introduction

Isoferulic acid (IFA), a naturally occurring cinnamic acid derivative, is a main active ingredient of the rhizoma of Cimicifuga dahurica. It has been shown various pharmacological activities. The aim of the study was to investigate the effect of IFA against MG-induced protein glycation and oxidative DNA damage. The protective ability of IFA was directly correlated to inhibition of hydroxyl and superoxide anion radical generation during the reaction of MG and lysine. ROS-induced oxidative DNA damage has been causally associated with the mechanism of mutagenesis [8]. In this regards, application of AGE inhibitors has emerged as a new strategy to reduce the occurrence of AGE-associated diseases. Recent attention has focused on identification of AGE inhibitors from phytochemical compounds that act as antioxidants, chelate metal ions, or directly trap MG [9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.