Abstract

Abstract 1. 1. From Saccharomyces cerevisiae, incubated on a glucose-free medium with acetate as the only carbon source, two different malate dehydrogenases ( l -malate: NAD+ oxidoreductase, EC 1.1.1.37) have been isolated by DEAE-cellulose ion-exchange chromatography. One of these enzymes was only found in the mitochondria and is called enzyme A or m-malate dehydrogenase; the other enzyme was found in the extramitochondrial c-space and is called enzyme B or c-malate dehydrogenase. At present it cannot be decided whether m-malate dehydrogenase also exists in the c-space or leaks when the mitochondria are injured. 2. 2. The reaction velocity plotted against the concentration of oxaloacetic acid showed a characteristic substrate inhibition in the case of m-malate dehydrogenase In contrast, c-malate dehydrogenase showed no substrate inhibition. This difference corresponds to the behaviour of m-malate dehydrogenase and c-malate dehydrogenase from liver. 3. 3. In yeast grown on glucose only m-malate dehydrogenase could be found, but after incubating the cells on acetate as the sole carbon source, both m-malate dehydrogenase and c-malate dehydrogenase were found. In reference to earlier experiments concerning the regulation of malate dehydrogenase activity in yeast, it is concluded that a repression of c-malate dehydrogenase synthesis by glucose occurs. This regulating mechanism is useful for the cell, because in the glycoxylate cycle c-malate dehydrogenase participates in the gluconeogenesis from acetate or ethanol. This enzyme is not necessary when glucose is in the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call