Abstract

Theoretical and quantitative prediction of pKa values at low computational cost is a current challenge in computational chemistry. We report that the isodesmic reaction scheme provides semi-quantitative predictions (i.e. mean absolute errors of 0.5-1.0 pKa unit) for the pKa1 (α-carboxyl), pKa2 (α-amino) and pKa3 (sidechain groups) of a broad set of amino acids and peptides. This method fills the gaps of thermodynamic cycles for the computational pKa calculation of molecules that are unstable in the gas phase or undergo proton transfer reactions or large conformational changes from solution to the gas phase. We also report the key criteria to choose a reference species to make accurate predictions. This method is computationally inexpensive and makes use of standard density functional theory (DFT) and continuum solvent models. It is also conceptually simple and easy to use for researchers not specialized in theoretical chemistry methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.