Abstract
Glycerol serves as the exclusive bio feedstock for the preparation of high purity sorbitol tricarbonate (STC) as new intermediate for poly(carbohydrate–urethane) thermosets and 100% bio-based non-isocyanate polyhydroxyurethane (NIPU) coatings. In this process, glycerol-based acrolein is dimerized, carbonated, and oxidized, thus producing the highly reactive diepoxy functional ethylene carbonate (DOC), which by facile chemical CO2 fixation yields high purity STC. Opposite to most state-of-the-art multifunctional five-membered cyclic carbonates and regardless of the feedstock used for its manufacture, STC enables amine curing at ambient temperature even in the absence of catalysts. According to FT-IR and NMR spectroscopic analyses of the amine/carbonate reaction kinetics, the internal cyclic carbonate group is 3 times more reactive with respect to the two terminal carbonate groups. This is attributed to the electron-withdrawing effect of terminal cyclic carbonates. Curing STC with a blend of bio-based flexi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.