Abstract

In this paper, the periodic solutions of the equation of Friedmann–Robertson–Walker cosmology with a cosmological constant are investigated. Using variable transformation, the original second-order ordinary differential equation is converted to a planar dynamical system with cosmic time t. Numerical simulations indicate that period function T(h) of this dynamical system is monotonically increasing. However, a new planar dynamical system could be deduced by using conformal time variable [Formula: see text]. We prove that the new planar dynamical system has two isochronous centers under certain parameter conditions by using Picard–Fuchs equation. Explicitly, we find that there exist two families of periodic solutions with equal period for the new planar dynamical system which is derived from the Friedmann–Robertson–Walker model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.