Abstract

ABSTRACT The Gaia mission has provided highly accurate observations that have significantly reduced the scatter in the colour–magnitude diagrams of open clusters. As a result of the improved isochrone sequence of the open cluster M67, we have created new stellar models that avoid commonly used simplifications in 1D stellar modelling, such as mass-independent core overshooting and a constant mixing length parameter. This has enabled us to deliver a precise isochrone specifically designed for M67, available for download. We follow a commonly used qualitative approach to adjust the input physics to match the well-defined colour–magnitude sequence, and we test the model-predicted masses against a known eclipsing binary system at the main sequence turnoff of the cluster. Despite using improvements in photometry and stellar physics we cannot match the masses of both binary components with the same theoretical isochrone. A $\chi ^{2}$-based isochrone fitting approach using our preferred input physics results in a cluster age of $3.95^{+ 0.16}_{- 0.15}$ Gyr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.