Abstract
Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe 61Co 9− x Zr 8Mo 5W x B 17 ( x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov–Johnson–Mehl–Avrami and Ranganathan–Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E 1 K for the first crystallization in the isochronal annealing process and activation energy E n for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E 2 K for the second crystallization in the isochronal annealing process and growth activation energy E g in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.