Abstract

We study the conductivities σ of (i) the equilibrium isochoric state σ_{is}, (ii) the equilibrium isobaric state σ_{ib}, and also the (iii) nonequilibrium ultrafast matter state σ_{uf} with the ion temperature T_{i} less than the electron temperature T_{e}. Aluminum, lithium, and carbon are considered, being increasingly complex warm dense matter systems, with carbon having transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared where possible with experimental data to characterize σ_{ic}, σ_{ib}, and σ_{uf}. The NPA σ_{ib} is closest to the available experimental data when compared to results from DFT with MD simulations, where simulations of about 64-125 atoms are typically used. The published conductivities for Li are reviewed and the value at a temperature of 4.5 eV is examined using supporting x-ray Thomson-scattering calculations. A physical picture of the variations of σ with temperature and density applicable to these materials is given. The insensitivity of σ to T_{e} below 10 eV for carbon, compared to Al and Li, is clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call