Abstract

The isochoric heat capacity of two binary (CO2+n-decane) mixtures (0.095 and 0.178 mole fraction of n-decane) have been measured with a high- temperature, high-pressure, nearly constant volume adiabatic calorimeter. Measurements were made at nineteen near-critical liquid and vapor densities between 87 and 658 kg·m−3 for the composition of 0.095 mole fraction n-decane and at nine densities between 83 and 458 kg·m−3 for the composition of 0.178 mole fraction n-decane. The range of temperatures was 295 to 568 K. These temperature and density ranges include near- and supercritical regions. The measurements were performed in both one- and two-phase regions including the vapor + liquid coexistence curve. The uncertainty of the heat- capacity measurements is estimated to be 2% (coverage factor k=2). The uncertainty in temperature is 15 mK, and that for density measurements is 0.06%. The liquid and vapor one- $$(C_{V1}^{\prime}, C_{V1}^{\prime \prime})$$ and two-phase $$(C_{V2}^{\prime}, C_{V2}^{\prime \prime})$$ isochoric heat capacities, temperatures (T S), and densities (ρS) at saturation were measured by using the well-established method of quasi-static thermograms for each filling density. The critical temperatures (T C), the critical densities (ρC), and the critical pressure (P C) for the CO2+n-decane mixtures were extracted from the isochoric heat-capacity measurements on the coexistence curve. The observed isochoric heat capacity along the critical isochore of the CO2+n-decane mixture exhibits a renormalization of the critical behavior of C V X typical for mixtures. The values of the characteristic parameters (K 1, K 2), temperatures (τ1 ,τ2), and the characteristic density differences $$(\Delta \bar{\rho}_1, \Delta \bar{\rho}_2)$$ were estimated for the CO2+n-decane mixture by using the critical-curve data and the theory of critical phenomena in binary mixtures. The ranges of conditions were defined on the T-x plane for the critical isochore and the ρ-x plane for the critical isotherm, for which we observed renormalization of the critical behavior for the isochoric heat capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.