Abstract

BackgroundIncreasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde.ResultsWe adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol) vs 0.14 g/L/OD600 (isobutyraldehyde)). Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR) activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600) and decreased isobutanol production (0.4 g/L/OD600). By assessing production by overexpression of each candidate IBR, we reveal that AdhP, EutG, YjgB, and FucO are active toward isobutyraldehyde. Finally, we assessed long-term isobutyraldehyde production of our best strain containing a total of 15 gene deletions using a gas stripping system with in situ product removal, resulting in a final titer of 35 g/L after 5 days.ConclusionsIn this work, we optimized E. coli for the production of the important chemical feedstock isobutyraldehyde by the removal of IBRs. Long-term production yielded industrially relevant titers of isobutyraldehyde with in situ product removal. The mutational load imparted on E. coli in this work demonstrates the versatility of metabolic engineering for strain improvements.

Highlights

  • Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks

  • As a starting point, E. coli strain JCL260 was used to assess initial isobutyraldehyde production. This strain was previously optimized for isobutanol production [5,17], by deleting adhE, ldhA, fnr, frdAB, pta, and pflB

  • To assess the initial production, pGR03 and pSA129 were introduced into JCL260. This strain produced only 0.14 g/L/OD600 isobutyraldehyde, and as high as 1.45 g/L/OD600 isobutanol after 24 hours. This roughly 1:10 ratio is likely the result of one or several isobutyraldehyde reductase (IBR) including yqhD on the E. coli genome [16]

Read more

Summary

Introduction

Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. The dependence on finite petroleum and natural gas resources as well as their potential environmental impact has generated interest in exploring renewable sources for replacements. This has more notably been applied to the areas of transportation fuels. In 2004, the petrochemical industry consumed 4 quadrillion BTUs (British thermal units) of petroleum and natural gas for feedstock use to produce thousands of chemicals [1]. These chemicals are essential to the synthesis of plastics, rubbers, and pharmaceutical compounds that play a major role in our standard of living

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.