Abstract

On the basis of our previous studies of microbial L-valine production under oxygen deprivation, we developed isobutanol-producing Corynebacterium glutamicum strains. The artificial isobutanol synthesis pathway was composed of the first three steps of the L-valine synthesis pathway; and the subsequent Ehrlich Pathway: pyruvate was converted to 2-ketoisovalerate in the former reactions; and the 2-keto acid was decarboxylated into isobutyraldehyde, and subsequently reduced into isobutanol in the latter reactions. Although there exists redox cofactor imbalance in the overall reactions, i.e., NADH is generated via glycolysis whereas NADPH is required to synthesize isobutanol, it was resolved by taking advantage of the NAD-preferring mutant acetohydroxy acid isomeroreductase encoded by ilvCTM and the NAD-specific alcohol dehydrogenase encoded by adhA. Each enzyme activity to synthesize isobutanol was finely tuned by using two kinds of lac promoter derivatives. Efficient suppression of succinate by-production and improvement of isobutanol yield resulted from inactivation of pckA, which encodes phosphoenolpyruvate carboxykinase, whereas glucose consumption and isobutanol production rates decreased because of the elevated intracellular NADH/NAD+ ratio. On the other hand, introduction of the exogenous Entner–Doudoroff pathway effectively enhanced glucose consumption and productivity. Overexpression of phosphoenolpyruvate:carbohydrate phosphotransferase system specific to glucose and deletion of ilvE, which encodes branched-chain amino acid transaminase, further suppressed by-products and improved isobutanol productivity. Finally, the produced isobutanol concentration reached 280 mM at a yield of 84% (mol/mol glucose) in 24 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call