Abstract
Isobaric (vapour + liquid) equilibrium data have been measured for the (toluene + sulfolane), (ethylbenzene + sulfolane), and (isopropylbenzene + sulfolane) binary systems with a modified Rose-Williams still at 101.33 kPa. The experimental data of binary systems were well correlated by the non-random two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) activity coefficient models for the liquid phase. All the experimental results passed the thermodynamic consistency test by the Herington method. Furthermore, the model UNIFAC (Do) group contribution method was used. Sulfolane is treated as a group (TMS), the new group interaction parameters for CH 2–TMS, ACH–TMS and ACCH 2–TMS were regressed from the VLE data of (toluene + sulfolane) and (ethylbenzene + sulfolane) binary systems. Then these group interaction parameters were used to estimate phase equilibrium data of the (isopropylbenzene + sulfolane) binary system. The results showed that the estimated data were in good agreement with the experimental values. The maximum and average absolute deviations of the temperature were 4.50 K and 2.39 K, respectively. The maximum and average absolute deviations for the vapour phase compositions of isopropylbenzene were 0.0237 and 0.0137, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.