Abstract
Vapor–liquid equilibrium (VLE) at 101.3 kPa have been determined for a ternary system (tetrahydofuran + 2-propanol + 2,2,4-trimethylpentane) and its constituent binary systems (tetrahydrofuran + 2-propanol, tetrahydrofuran + 2,2,4-trimethylpentane, and 2-propanol + 2,2,4-trimethylpentane). The activity coefficients of liquid mixtures were calculated from the modified Raoult's law. Thermodynamic consistency tests were performed for all VLE data. The VLE data of the binary mixtures and ternary mixtures were correlated using the Margules, Wilson, NRTL, and UNIQUAC activity-coefficient models. The models with their best-fitted interaction parameters of the binary systems were used to predict the ternary vapor–liquid equilibrium. All VLE data are also used to calculate the reduced excess molar Gibbs free energy g E/ RT and the deviations in the boiling point Δ T. The calculated quantities of g E/ RT and Δ T were fitted to variable-degree polynomials in terms of liquid composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chinese Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.