Abstract

Vapor-liquid-liquid equilibria (VLLE) data were determined for the ternary system 1-butanol + water + 2,3-butanediol at 101.3 kPa. A binary heterogeneous minimum boiling azeotrope was found at 365.95 K with mass fractions of 0.526 and 0.474 for 1-butanol and water, respectively. A modified UNIQUAC model was used to predict VLLE by using experimental data, including VLE of 1-butanol + 2,3-butanediol, VLE of water + 2,3-butanediol, LLE of 1-butanol + water, and one LLE tie-line of 1-butanol + water + 2,3-butanediol. The experimental data were compared with the calculated values. The absolute average relative deviations (AARD) are 1.65%, 1.72%, and 2.22% for organic liquid phase, aqueous liquid phase, and vapor phase, respectively. It demonstrates an appropriate fit of the modified UNIQUAC model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.