Abstract

Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. A PG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling molecules localized in the apical plasma membrane and active membrane trafficking. The mechanisms underlying the interaction and membrane trafficking are not well understood. In this work, we purified PG and PT plasma-membrane vesicles from Lilium davidii Duch. using the aqueous two-phase partition technique, then enriched plasma membrane proteins by using Brij58 and KCl to remove loosely bound contaminants. We identified 223 integral and membrane-associated proteins in the plasma membrane of PGs and PTs by using isobaric tags for relative and absolute quantification (iTRAQ) and 2-D high-performance liquid chromatography-tandem mass spectrometry. More than 68% of the proteins have putative transmembrane domains and/or lipid-modified motifs. Proteins involved in signal transduction, membrane trafficking and transport are predominant in the plasma-membrane proteome. We revealed most components of the clathrin-dependent endocytosis pathway. Statistical analysis revealed 14 proteins differentially expressed in the two development stages: in PTs, six upregulated and eight downregulated are mainly involved in signaling, transport and membrane trafficking. These results provide novel insights into polarized PT growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.