Abstract

A vast number of human cell lines are available for cell culture model-based studies, and as such the potential exists for discrepancies in findings due to cell line selection. To investigate this concept, the authors determine the relative protein abundance profiles of a panel of eight diverse, but commonly studied human cell lines. This panel includes HAP1, HEK293T, HeLa, HepG2, Jurkat, Panc1, SH-SY5Y, and SVGp12. A mass spectrometry-based proteomics workflow designed to enhance quantitative accuracy while maintaining analytical depth is used. To this end, this strategy leverages TMTpro16-based sample multiplexing, high-field asymmetric ion mobility spectrometry, and real-time database searching. The data show that the differences in the relative protein abundance profiles reflect cell line diversity. The authors also determine several hundred proteins to be highly enriched for a given cell line, and perform gene ontology and pathway analysis on these cell line-enriched proteins. An R Shiny application is designed to query protein abundance profiles and retrieve proteins with similar patterns. The workflows used herein can be applied to additional cell lines to aid cell line selection for addressing a given scientific inquiry or for improving an experimental design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.