Abstract
The use of mass spectrometry for protein identification and quantification in cerebrospinal fluid (CSF) is at the forefront of research efforts to identify and explore biomarkers for the early diagnosis and prognosis of neurologic disorders. Here we implemented a 4-plex N,N-dimethyl leucine (DiLeu) isobaric labeling strategy in a longitudinal study aiming to investigate protein dynamics in children with B-cell acute lymphoblastic leukemia (B-cell ALL) undergoing chemotherapy. The temporal profile of CSF proteome during chemotherapy treatment at weeks 5, 10-14, and 24-28 highlighted many differentially expressed proteins, such as neural cell adhesion molecule, neuronal growth regulator 1, and secretogranin-3, all of which play important roles in neurodegenerative diseases. A total of 63 proteins were significantly altered across all of the time points investigated. The most over-represented biological processes from gene ontology analysis included platelet degranulation, complement activation, cell adhesion, fibrinolysis, neuron projection, regeneration, and regulation of neuron death. We expect that results from this and future studies will provide a means to monitor neurotoxicity and develop strategies to prevent central nervous system injury in response to chemotherapy in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.