Abstract
This study reports on the feasibility of internal iso-octane steam reforming process in an YSZ solid oxide fuel cell reactor by employing Cu/CeO2 as catalyst/anodic electrode. The Cu/CeO2 anode is evaluated for its both catalytic and electro-catalytic performance. In all cases, i-C8H18 was successfully reformed by H2O to syngas. In addition, appreciable amounts of CO2 and CH4 were also produced. The distribution of products was also influenced by i-C8H18 thermal pyrolysis and catalytic decomposition processes leading mainly to olefins formation. At closed-circuit operation, and by applying anodic overpotentials, mainly H2 and CO were electro-oxidized to H2O and CO2, while at cathodic polarization conditions the co-electrolysis of H2O and CO2 to H2 and CO was taking place, affecting the equilibrium reactions at the anodic chamber. During fuel cell operation, the electrochemical performance increased with cell temperature and i-C8H18/H2O feed ratio. The AC impedance spectroscopy analysis showed contributions both from charge and mass transfer processes, with the latter to dominate the overall cell performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.