Abstract

Though CD8(+) T lymphocytes are important cellular mediators of islet allograft rejection, their molecular mechanism of rejection remains unidentified. Surprisingly, while it is generally assumed that CD8(+) T cells require classic cytotoxic mechanisms to kill grafts in vivo, neither perforin nor FasL (CD95L) are required for acute islet allograft rejection. Thus, it is unclear whether such contact-dependent cytotoxic pathways play an essential role in islet rejection. Moreover, both perforin and CD95L have been implicated in playing roles in peripheral tolerance, further obscuring the role of these effector pathways in rejection. Therefore, we determined whether perforin and/or FasL (CD95L) were required by donor MHC-restricted ('direct') CD8(+) T cells to reject islet allografts in vivo. Islet allograft rejection by primed, alloreactive CD8(+) T cells was examined independently of other lymphocyte subpopulations via adoptive transfer studies. Individual disruption of T-cell-derived perforin or allograft Fas expression had limited impact on graft rejection. However, simultaneous disruption of both pathways prevented allograft rejection in most recipients despite the chronic persistence of transferred T cells at the graft site. Thus, while there are clearly multiple cellular pathways of allograft rejection, perforin and FasL comprise alternate and necessary routes of acute CD8(+) T-cell-mediated islet allograft rejection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.